Звук высокой точности – уточнение и прослушивание

Явление резонанса

У большинства твёрдых тел имеется собственная частота резонанса. Понять этот эффект достаточно просто на примере обычной трубы, открытой только с одного конца. Представим ситуацию, что с другого конца трубы подсоединяется динамик, который может играть какую-то одну постоянную частоту, её также впоследствии можно менять. Так вот, у трубы имеется собственная частота резонанса, говоря простым языком — это частота, на которой труба «резонирует» или издаёт свой собственный звук. Если частота динамика (в результате регулировки) совпадёт с частотой резонанса трубы, то возникнет эффект увеличения громкости в несколько раз. Это происходит потому, что громкоговоритель возбуждает колебания воздушного столба в трубе со значительной амплитудой до тех пор, пока не найдётся та самая «резонансная частота» и произойдёт эффект сложения. Возникшее явление можно описать следующим образом: труба в этом примере «помогает» динамику, резонируя на конкретной частоте, их усилия складываются и «выливаются» в слышимый громкий эффект. На примере музыкальных инструментов легко прослеживается это явление, поскольку в конструкции большинства присутствуют элементы, называемые резонаторами. Нетрудно догадаться, что резонатор служит цели усилить определённую частоту или музыкальный тон. Для примера: корпус гитары с резонатором ввиде отверстия, сопрягаемого с объёмом; Конструкция трубки у флейты (и все трубы вообще); Циллиндрическая форма корпуса барабана, который сам по себе является резонатором определённой частоты.

Волновая природа звука

Чтобы лучше понять систему возникновения звуковой волны, представим классический динамик, находящийся в трубе, наполненной воздухом. Если динамик совершит резкое движение вперёд, то воздух, находящийся в непосредственной близости диффузора на мгновение сжимается. После этого воздух расширится, толкая тем самым сжатую воздушную область вдоль по трубе. Вот это волновое движение и будет впоследствии звуком, когда достигнет слухового органа и «возбудит» барабанную перепонку. При возникновении звуковой волны в газе создаётся избыточное давление, избыточная плотность и происходит перемещение частиц с постоянной скоростью

Про звуковые волны важно помнить то обстоятельство, что вещество не перемещается вместе со звуковой волной, а возникает лишь временное возмущение воздушных масс

Если представить поршень, подвешенный в свободном пространстве на пружине и совершающий повторяющиеся движения «вперёд-назад», то такие колебания будут называться гармоническими или синусоидальными (если представить волну в виде графика, то получим в этом случае чистейшую синусойду с повторяющимися спадами и подъёмами). Если представить динамик в трубе (как и в примере, описанном выше), совершающий гармонические колебания, то в момент движения динамика «вперёд» получается известный уже эффект сжатия воздуха, а при движении динамика «назад» обратный эффект разряжения. В этом случае по трубе будет распространяться волна чередующихся сжатий и разрежений. Расстояние вдоль трубы между соседними максимумами или минимумами (фазами) будет называться длиной волны. Если частицы колеблются параллельно направлению распространения волны, то волна называется продольной. Если же они колеблются перпендикулярно направлению распространения, то волна называется поперечной. Обычно звуковые волны в газах и жидкостях – продольные, в твердых же телах возможно возникновение волн обоих типов. Поперечные волны в твердых телах возникают благодаря сопротивлению к изменению формы. Основная разница между этими двумя типами волн заключается в том, что поперечная волна обладает свойством поляризации (колебания происходят в определенной плоскости), а продольная – нет.

Скорость звука

Скорость звука напрямую зависит от характеристик среды, в которой он распространяется. Она определяется (зависима) двумя свойствами среды: упругостью и плотностью материала. Скорость звука в твёрдых телах соответственно напрямую зависит от типа материала и его свойств. Скорость в газовых средах зависит только от одного типа деформации среды: сжатие-разрежение. Изменение давления в звуковой волне происходит без теплообмена с окружающими частицами и носит название адиабатическое. Скорость звука в газе зависит в основном от температуры — возрастает при повышении температуры и падает при понижении. Так же скорость звука в газообразной среде зависит от размеров и массы самих молекул газа, — чем масса и размер частиц меньше, тем «проводимость» волны больше и больше соответственно скорость.

В жидкой и твёрдой средах принцип распространения и скорость звука аналогичны тому, как волна распространяется в воздухе: путём сжатия-разряжения

Но в данных средах, помимо той же зависимости от температуры, достаточно важное значение имеет плотность среды и её состав/структура. Чем меньше плотность вещества, тем скорость звука выше и наоборот

Зависимость же от состава среды сложнее и определяется в каждом конкретном случае с учётом расположения и взаимодействия молекул/атомов.

Скорость звука в воздухе при t, °C 20: 343 м/с Скорость звука в дистиллированной воде при t, °C 20: 1481 м/с Скорость звука в стали при t, °C 20: 5000 м/с

Частотный спектр звука и АЧХ

Поскольку на практике практически не встречаются волны одной частоты, то возникает необходимость разложения всего звукового спектра слышимого диапазона на обертоны или гармоники. Для этих целей существуют графики, которые отображают зависимость относительной энергии звуковых колебаний от частоты. Такой график называется графиком частотного спектра звука. Частотный спектр звука бывает двух типов: дискретный и непрерывный. Дискретный график спектра отображает частоты по отдельности, разделённые пустыми промежутками. В непрерывном спектре присутствуют сразу все звуковые частоты. В случае с музыкой или акустикой чаще всего используется обычный график Амплитудно-Частотой Характеристики (сокращённо «АЧХ»). На таком графике представлена зависимость амплитуды звуковых колебаний от частоты на протяжении всего спектра частот (20 Гц — 20 кГц). Глядя на такой график легко понять, например, сильные или слабые стороны конкретного динамика или акустической системы в целом, наиболее сильные участки энергетической отдачи, частотные спады и подъёмы, затухания, а так же проследить крутизну спада.

Экспертное прослушивание

В качестве «референсных» устройств использовались:

  • наушники типа «бутоны» (со сменными силиконовыми вкладышами) Sharp HP-MD33-S, номинальный импеданс 16 Ом
  • Мониторные наушники Sennheiser 265 Linear (150 Ом)

Активная стерео пара JetBalance JB-382

Прослушивание показало, что наушники с номиналом 16 Ом категорически противопоказаны. Система прекрасно распознает их подключение, но бас куда то исчезает, а все фоновые шумы (в том числе от работающих дисков) как будто избирательно усиливаются. Наушники сопротивлением 150 Ом озвучиваются с полноценным басом, но система автоматически не распознала подключение профессионального номинала.

Нелинейные искажения на хороших колонках становятся слишком заметны. Подключение «хайфайной» многоканальной акустики лишено смысла при наличии только стерео записей. Хвала Всевышнему, программное (WinDVD 5.0 Platinum) воспроизведение шестиканального DVD – audio 24 бит 96 кГц идет без коверканного ресэмплирования звукового сигнала в 16 бит. Вот если бы Azalia еще и поддерживала многоканальный SACD! Тогда компьютерное аудио можно было бы рассматривать как резерв Hi-Fi аппаратуре.

Искусственная виртуализация даже на крутом шестиканальном акустическом комплекте вряд ли произведет должное впечатление. Кодек здесь ни при чем: просто в алгоритмах извлечения дополнительных каналов из обычного стерео о революционных достижениях говорить не приходится.

На панели настроек программного обеспечения кодека C-Media имеется занятная кнопочка под названием Dolby Digital Live. Неужто режим кодирования «живет»? Вынужден вас огорчить: в рамках нашего тестирования этот режим не исследовался – какие либо настройки качества кодирования в текущей версии программного обеспечения не доступны. Хотя кодек C-Media 9880 такую экзотику поддерживает, но все «штучки» от Dolby Laboratory, включая DDICE-DolbyR Digital Interactive Content Encoder, являются опциональными «софтовыми».

Возможно, использование более удачного аудио кодека и обвешивание его всякими фильтрами при встраивании в материнскую плату улучшит ситуацию, однако 32 бит 192 кГц звука нужны здесь как «в бане лыжи». Тем более миниатюризация материнок и корпусов входит в моду, и впихивать громоздкие «хай-файные» аудио железяки будет попросту некуда.

Стоячие волны и интерференция

Когда динамик создаёт звуковые волны в ограниченном пространстве неизбежно возникает эффект отражения волн от границ. В результате этого чаще всего возникает эффект интерференции — когда две или более звуковых волн накладываются друг на друга. Особыми случаями явления интерференции являются образование: 1) Биений волн или 2) Стоячих волн. Биения волн — это случай, когда происходит сложение волн с близкими частотами и амплитудой. Картина возникновения биений: когда две похожие по частоте волны накладываются друг на друга. В какой-то момент времени при таком наложении, амплитудные пики могут совпадать «по фазе», а также могут совпадать и спады по «противофазе». Именно так и характеризуются биения звука

Важно помнить, что в отличие от стоячих волн, фазовые совпадения пиков происходят не постоянно, а через какие-то временные промежутки. На слух такая картина биений различается достаточно чётко, и слышится как периодическое нарастание и убывание громкости соответственно

Механизм возникновения этого эффекта предельно прост: в момент совпадения пиков громкость нарастает, в момент совпадения спадов громкость уменьшается.

Стоячие волны возникают в случае наложения двух волн одинаковой амлитуды, фазы и частоты, когда при «встрече» таких волн одна движется в прямом, а другая – в обратном направлении. В участке пространства (где образовалась стоячая волна) возникает картина наложения двух частотных амплитуд, с чередованием максимумов (т.н. пучностей) и минимумов (т.н. узлов)

При возникновении этого явления крайне важное значение имеет частота, фаза и коэффициент затухания волны в месте отражения. В отличие от бегущих волн, в стоячей волне отсутствует перенос энергии вследствие того, что образующие эту волну прямая и обратная волны переносят энергию в равных количествах и в прямом и в противоположном направлениях

Для наглядного понимания возникновения стоячей волны, представим пример из домашней акустики. Допустим, у нас есть напольные акустические системы в некотором ограниченном пространстве (комнате). Заставив их играть какую-нибудь композицию с большим количеством баса, попробуем изменить местоположение слушателя в помещении. Таким образом слушатель, попав в зону минимума (вычитания) стоячей волны ощутит эффект того, что баса стало очень мало, а если слушатель попадает в зону максимума (сложения) частот, то получается обратный эффект существенного увеличения басовой области. При этом эффект наблюдается во всех октавах базовой частоты. Например, если базовая частота составляет 440 Гц, то явление «сложения» или «вычитания» будет наблюдаться также на частотах 880 Гц, 1760 Гц, 3520 Гц и т.д.

Заключение

Интегрированное аудио снова, мягко говоря, не блеснуло. Налицо «дебилизация» массового компьютерного звука. Алгоритмические примочки и прочие искусственные эффекты берут верх (за счет дешевизны размножения?).

Как выяснилось, технология High Definition Audio, реализованная в нынешнем виде, ничего общего не имеет с действительно высококачественным звуком (представленным в форматах DVD-audio и SACD). Просто очередная завлекалочка для покупателей, любителей всего новенького, обладающих дешевенькой многоканальной акустикой. Да, удобство эксплуатации впечатляюще улучшилось,а количество цифровых обработок значительно возросло и интерфейс приосанился. Но качество воспроизведения аналогового звука не улучшилось, а на некоторых материнских платах даже упало (по сравнению с добротными 16 битными аудио устройствами). Вот тебе и Azalia: реальная полоса частот не выше 20 кГц, хиловатый динамический диапазон 85 дБА, куча нелинейных искажений, пролезание импульсных помех, смехотворная разница между 16 и 24 бит. И это только воспроизведение. Запись на протестированной Azalia оказалась откровенно посредственной. При задействовании виртуальной многоканальности ключевые показатели еще хуже (вдобавок искажается частотный отклик). Отговорка вроде той, что драйверы-алгоритмы еще совершенствуются, спустя год, не убеждает.

Следует признать, что использование дорогого супер кодека с выделением обширного места на материнской плате под обвязку и частокола фильтров способно существенно улучшить ситуацию. Однако подозреваю, что популярным такое решение не станет. Если появится хотя бы одна реально продвинутая модель, то это уже станет событием из ряда вон. Поэтому истинным ценителям качественного звука от внешних саунд-карт отказаться не удастся и во времена High Definition Audio.

Ну а что творится со звуком на цифровых выходах сегодняшней (и завтрашней) Azalia – отдельная тема.

PS

Нынешние заправилы компьютерного аудио забывают прописную истину: главное – качество исходного сигнала и его воплощения в звук, а все остальное – вторично.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий